Assignment
Question 1
Solution
Dependent Variable: RP_MS | |||||
Method: Least Squares | |||||
Date: 09/19/18 Time: 15:21 | |||||
Sample: 1998M01 2008M12 | |||||
Included observations: 132 | |||||
Variable | Coefficient | Std. Error | t-Statistic | Prob. | |
C | 0.006098 | 0.007747 | 0.787109 | 0.432651 | |
RP_MKT | 1.318947 | 0.16079 | 8.202908 | 1.98E-13 | |
R-squared | 0.341064 | Mean dependent var | 0.005881 | ||
Adjusted R-squared | 0.335995 | S.D. dependent var | 0.109224 | ||
S.E. of regression | 0.089003 | Akaike info criterion | -1.98527 | ||
Sum squared resid | 1.029792 | Schwarz criterion | -1.94159 | ||
Log likelihood | 133.0275 | Hannan-Quinn criter. | -1.96752 | ||
F-statistic | 67.28771 | Durbin-Watson stat | 2.34505 | ||
Prob(F-statistic) | 1.98E-13 | ||||
RP_MS= 0.006098 + 1.318947 RP_MKT
S.E (0.0077) (0.1608)
R-squared = 0.341064
Some screenshots:
Question 2
Solution
The RP_MKT has increased by 1% and so the RP_MS increases by 1.32 %
(as RP_MS= 0.006098 + 1.318947 RP_MKT )
Question 3
Solution
We assume as α = 0.05. Following hypothesis Ho: α’ = 0 & H1: α’ <> 0. We know that if p< α we reject the null hypothesis
t = (α – α’)/SE(α’) = (0.0061 -0)/0.0077= 0.72
α’ (t=0.72) does not lie in the rejection side and so null hypothesis is accepted.
Question 4
Answer:
We assume as α = 0.05. Following hypothesis Ho: Bi = 0 & H1: Bj <> 0. We know that if p< α we reject the null hypothesis
t = (Bi– Bj)/SE(Bj) = (1.319 -0)/0.161= 8.2
Since t is now in the rejection region so we reject the Null Hypothesis.
Question 5
Answer:
We assume as α = 0.05. Following hypothesis Ho: Bi >1 & H1: Bj <= 1. We know that if p< α we reject the null hypothesis
t = (Bi– Bj)/SE(Bj) = (1.319 – 1)/0.161= 1.98
Since t is now in the rejection region so we reject the Null Hypothesis as shown in the below figure:
Question 6
Answer: The r squared = 0.411. this can be interpreted as 34.11 % variations with respect to (Y) RP_MS over the mean value.
Question 7
Answer:
Y=Bi + Bj+e
rj – rf = α’ + Bj (rm – rj)
- rj – 0.000025 = 0.0061 + 1.3159 (0.0215*7% – 0.000025)
- rj – 0.000025 = 0.0061 + 0.029
- rj = 0.0347 = 3.47 %
Question 8
Answer:
Dependent Variable: RP_GE | ||||
Method: Least Squares | ||||
Date: 09/19/18 Time: 15:47 | ||||
Sample: 1998M01 2008M12 | ||||
Included observations: 132 | ||||
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
C | -0.00117 | 0.004759 | -0.24519 | 0.806692 |
RP_MKT | 0.89926 | 0.098782 | 9.103512 | 1.33E-15 |
R-squared | 0.38931 | Mean dependent var | -0.00131 | |
Adjusted R-squared | 0.384612 | S.D. dependent var | 0.069702 | |
S.E. of regression | 0.054679 | Akaike info criterion | -2.95964 | |
Sum squared resid | 0.388672 | Schwarz criterion | -2.91596 | |
Log likelihood | 197.3363 | Hannan-Quinn criter. | -2.94189 | |
F-statistic | 82.87393 | Durbin-Watson stat | 2.239423 | |
Prob(F-statistic) | 1.33E-15 |
RP_GE = -0.00117+ 0.89926 RP_MKT
S.E: = (0.0048) (0.0988)
R-square = 0.38931
Dependent Variable: RP_GM | ||||
Method: Least Squares | ||||
Date: 09/19/18 Time: 15:51 | ||||
Sample: 1998M01 2008M12 | ||||
Included observations: 132 | ||||
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
C | -0.01155 | 0.009743 | -1.18547 | 0.237992 |
RP_MKT | 1.261411 | 0.202223 | 6.237709 | 5.77E-09 |
R-squared | 0.230355 | Mean dependent var | -0.01176 | |
Adjusted R-squared | 0.224435 | S.D. dependent var | 0.127106 | |
S.E. of regression | 0.111937 | Akaike info criterion | -1.52672 | |
Sum squared resid | 1.628896 | Schwarz criterion | -1.48304 | |
Log likelihood | 102.7635 | Hannan-Quinn criter. | -1.50897 | |
F-statistic | 38.90901 | Durbin-Watson stat | 2.062907 | |
Prob(F-statistic) | 5.77E-09 | |||
RP_GM = -0.0155 + 1.2614 RP_MKT
S.E (0.0097) (0.2022)
R-squared = 0.2303
Dependent Variable: RP_IBM | ||||
Method: Least Squares | ||||
Date: 09/19/18 Time: 15:53 | ||||
Sample: 1998M01 2008M12 | ||||
Included observations: 132 | ||||
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
C | 0.005851 | 0.006091 | 0.960574 | 0.33855 |
RP_MKT | 1.188208 | 0.126433 | 9.397948 | 2.52E-16 |
R-squared | 0.404548 | Mean dependent var | 0.005656 | |
Adjusted R-squared | 0.399967 | S.D. dependent var | 0.090347 | |
S.E. of regression | 0.069985 | Akaike info criterion | -2.46604 | |
Sum squared resid | 0.636722 | Schwarz criterion | -2.42237 | |
Log likelihood | 164.7589 | Hannan-Quinn criter. | -2.4483 | |
F-statistic | 88.32143 | Durbin-Watson stat | 2.171986 | |
Prob(F-statistic) | 2.52E-16 |
RP_IBM = 0.0058 + 1.1882 RP_MKT
S.E (0.0061) (0.1264)
R-square = 0.4045
Dependent Variable: RP_DISNEY | ||||
Method: Least Squares | ||||
Date: 09/19/18 Time: 15:55 | ||||
Sample: 1998M01 2008M12 | ||||
Included observations: 132 | ||||
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
C | -0.00115 | 0.005956 | -0.19298 | 0.847279 |
RP_MKT | 0.897838 | 0.123627 | 7.262477 | 3.11E-11 |
R-squared | 0.288621 | Mean dependent var | -0.0013 | |
Adjusted R-squared | 0.283149 | S.D. dependent var | 0.080824 | |
S.E. of regression | 0.068432 | Akaike info criterion | -2.51093 | |
Sum squared resid | 0.608775 | Schwarz criterion | -2.46725 | |
Log likelihood | 167.7212 | Hannan-Quinn criter. | -2.49318 | |
F-statistic | 52.74358 | Durbin-Watson stat | 2.426356 | |
Prob(F-statistic) | 3.11E-11 | |||
RP_DISNEY = -0.00115 +
0.89783 RP_MKT
S.E (0.00595) (0.1236)
R-square = 0.288621
Dependent Variable: RP_MEX | ||||
Method: Least Squares | ||||
Date: 09/19/18 Time: 15:57 | ||||
Sample: 1998M01 2008M12 | ||||
Included observations: 132 | ||||
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
C | 0.00788 | 0.004322 | 1.823133 | 0.070581 |
RP_MKT | 0.413969 | 0.089713 | 4.614357 | 9.33E-06 |
R-squared | 0.140736 | Mean dependent var | 0.007812 | |
Adjusted R-squared | 0.134126 | S.D. dependent var | 0.053367 | |
S.E. of regression | 0.049659 | Akaike info criterion | -3.15223 | |
Sum squared resid | 0.320585 | Schwarz criterion | -3.10855 | |
Log likelihood | 210.0471 | Hannan-Quinn criter. | -3.13448 | |
F-statistic | 21.29229 | Durbin-Watson stat | 2.348331 | |
Prob(F-statistic) | 9.33E-06 |
RP_MEX = 0.00788 + 0.413969 RP_MKT
S.E (0.0043) (0.0897)
R-square = 0.140736
Appendix:
Eviews output